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direction cannot be defined except for its angle with 
the unique axis of the magnetic structure. 

This is not an unexpected result, especially if we 
realize the fact that  q2 is a function of second order 
terms of the direction cosines of e and k, and the sum- 
mation over equivalent reflections may cancel the 
cross terms and leave only the terms referring to the 
unique axis. I t  may be pointed out here that  consider- 
able similarity exists between the expression for 1/d 9 
and (cos ~ ~7), especially in the cases of tetragonal, 
hexagonal and orthorhombic symmetries. We may 
examine some of the known magnetic structures 
(see, for example, Bacon, 1955, and Shull & Wollan, 
1956), in the light of the present results (see Fig. 1). 

In most of the cases of uniaxial crystals the spin 
lies in a direction parallel or perpendicular to the 
unique axis. When it coincides with the unique axis 
(9 - 0), the spin direction can be given by the powder 
data unambiguously. This is not true, however, when 
it is perpendicular to the unique axis (q0 = 90°). 
Although in some cases special directions were as- 
sumed within the plane, it must be recognized that  
any other direction within this plane satisfies the 
powder data equally well. 

One known case with ~ not equal to 0 ° or 90 ° is 
tetragonal l~iF 2, in which the spin direction was 
found to be 10 ° off the tetragonal axis (Erickson, 
1953). In this case, Erickson stated clearly that  the 
data could not be interpreted to give more information 
than the inclination of the moment with respect to 
the tetragonal axis. 

The spin configuration of the Mn0-type antiferro- 
magnetics shown in Fig. 1 (a) presents an interesting 
example. In this case, the configurational symmetry 
is rhombohedral although the chemical symmetry is 
cubic. I t  can thus be concluded that  the spin direction 
cannot be defined except for its angle with the [111] 

direction. The spin directions of this group of com- 
pounds were first studied by Shull, Strauser & Wollan 
(1951) and recently reexamined by Roth (1958). 
Although the uncertainty of the spin direction within 
the (111) plane was recognized, the general uncertainty 
associated with rhombohedral symmetry was over- 
looked and the spin directions were obtained by a 
trial-and-error method. A simple formula for (q2) can 
be obtained from equation (13) by assuming cos~* = 0 

. a*2d 2 
(cos 2~]) = ( (n - r )  sin 29+(n÷2r )  cos 2~) ~ . 

Then the problem becomes a one parameter problem 
to determine ~ from the observed intensities. 

The author is very grateful to Drs F. Jona, W. J. 
Takei, and T. 0guchi for helpful discussions. 
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X-ray Scattering by Bundles of Cylinders 
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The effects of interparticle interference on the low-angle scattering by a bundle of parallel cylinders 
in close-packed hexagonal array are calculated. The application of the results to the elucidation 
of the sizes of coherent hexagonal aggregates from X-ray scattering measurements obtained from 
both solid samples and solutions of long chain molecules is discussed; the calculations may also be 
of value in the interpretation of light-scattering results from similar solutions. 

In troduc t ion  

Interference effects in X-ray scattering at small angles 
are well known and theoretical and experimental 

discussions have been published both for scattering 
by spheres (e.g. Lund & Vineyard, 1949; O s t e r &  
Riley, 1952a; Guinier, Fournet, Walker & Yudowitch, 
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1955) and cylinders (e.g. Oster & Riley, 1952b; Heyn, 
1955a, b; Guinier et al., 1955). The correlation in 
phase between the X-ray scattering by the component 
units of a regular assembly of particles reduces the 
scattered intensity per particle below the value for an 
isolated particle and is responsible for the observed 
maxima and minima in the scattering curves at  small 
angles. There are two methods by which the properties 
of an assembly may be deduced from the observed 
scattering. The first method involves the fitting of the 
experimental curve by the calculation of the scattering 
curves of trial assemblies of particles of given size and 
shape arranged in a particular array. The second 
method requires a knowledge of the scattering enve- 
lope for a single particle on the same scale as that  
observed for the assembly. By a Fourier-integral 
method the probability of finding centres of particles 
cylindrically symmetrically disposed (for assemblies 
of cylinders) at  a given radial distance from the centre 
of any reference particle may then be determined. 

The first method is applied here to cylindrical units 
(of a helical form or otherwise) packed in centred 
hexagonal lattices of finite size. The application of the 
results to any practical case assumes the presence 
within a given specimen of a number of coherent 
assemblies of the cylindrical units of essentially the 
same size separated by regions where the packing of 
the units is disordered. 

Interest  in the interparticle interference effects in 
finite hexagonal lattices was stimulated by the ob- 
servation by North, Cowan & Randall (1954) of fine 
structure in the low-angle equatorial region and near 
the meridian on the third layer-line of the X-ray 
diagram from fibres of native rat-tail collagen. The 
presence and size of the aggregates of helical molecules 
in this collagen have been qualitatively discussed by 
McGavin, Harrison & North (1956). 

Scattering by a s s e m b l i e s  of parallel  
cyl indrical  units  

Consider an assembly of identical parallel cylinders 
(or helices) of length L >> ~t. Let each cylinder be in 
a fixed position relative to any other and let the 
separation of the centres of the pth and qth cylinders 
in the equatorial plane be Upq. If all rotational orienta- 
tions of the cylinders about their long axes are equally 
probable the normalized intensity of scattering of 
X-rays incident normally to the long axes is given by 

1 
I ( k R )  - - - ~ F " ( k R ) ~ J o ( k U p q ) ,  (1) 

p q 

where b --- 4~r(sin 0/~), 20 = s is the angle of scatter- 
ing, 0 the Bragg angle, the n rods in the assembly 
have radius R and J0 is a Bessel function of zero order. 
Fg(kR)  is the normalized cylindrically averaged in- 
tensity of scattering by a single cylinder (or helix). 
Expressions for Fg(kR) have been given by O s t e r &  
Riley (1952b) for hollow and solid smooth cyhnders 

and cylinders with radial structure and by Franklin 
& Klug (1955) for a helix. F~(kR) is measured ex- 
perimentally for specimens in which there is no 
systematic phase relationship between the scattering 
from the component units. 

Equation (1) may be conveniently written in the 
form 

I ( k R )  = F ~ ( k R ) T ( u ) ,  (2) 
where 

1 
T(u)  = -~ 2 ~ Jo(kU~q) (3) 

p q 

represents the interference between the contributions 
to the total scattering from the n units in the as- 
sembly. For any given material F2(lcR) is usually 
known to a good approximation either from direct 
measurements made on the scattering curve from a 
specimen where the lateral organization of the units 
is minimal or by physical measurements made on 
monodisperse solutions of the material. For example, 
in the case of collagen the cylindrically averaged 
molecular transform of the helix in the equatorial 
plane is fitted quite well by the scattering curve for 
a smooth solid cylinder of radius 6 A; the radius of 
the hydrated molecule in solution is about 6.7 /~_ 
(Boedtker & Dory, 1956). 

The changes in the detailed profile of the equatorial 
scattering observed in fibres when e.g. the relative 
humidi ty  of the atmosphere in the X-ray camera is 
varied essentially represent variations in the inter- 
ference function i.e. changes in the sizes of the regions 
over which coherent scattering extends. The inter- 
ference function is calculated below for a number of 
centred hexagonal lattices. 

The interference function 

For regular lattices qi.pq is readily expressible in terms 
of the separation s of cylinders which are nearest 
neighbours where s is measured in any plane parallel 
to the equatorial plane. Equation (3) may be written 

1 [ imam. 7 

where x = ks and the number of vectors between 
cylinders in any plane parallel to the equatorial plane 
of length r~s is bj. Here .~  b~ = n ( n - 1 )  and if there 

J 
are t complete rings of cylinders surrounding the 
cylinder de~ining the centre o~ the array making up 
the hexagonal lattice then jm~. = ( t + l ) 2 - 1  and 
n = 3 t2÷3t+l .  

I t  is convenient to set up a co-ordinate system by  
which any vector between cylinders may be described 
by the two integers (1, m) where 1 _> m >_ 0; it  is also 
convenient to replace the subscript j by (1, m). The 
co-ordinate system is shown in Fig. 1. 

The separations A B  and CD are respectively r~2s 
and r21s and the general separation is given by 

r~, ~n = 12 + ml + m 9 . 
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l 9 m r 

O, 0 
1, 0 
2, 0 
3, 0 
4, 0 
5, 0 
6, 0 
7, 0 
8 ,0  
9, 0 

10, 0 
11, 0 
12, 0 
13, 0 
14, 0 
15, 0 
16, 0 

1, 1 
2, 1 
3, 1 
4, 1 
5, 1 
6, 1 
7, 1 
8, 1 
9, 1 

10, 1 
11, 1 
12, 1 
13, 1 
14, 1 
15, 1 

2, 2 
3, 2 
4, 2 
5, 2 
6, 2 
7, 2 
8, 2 
9, 2 

10, 2 

T a b l e  1. N u m b e r  o f  in ter-cyl inder  vectors f o r  the hexagonal  lattices t = 1 to t = 8 

bl~ m 
^ 

t - ~ l  t - ~ 2  t ~ 3  t - ~ 4  t ~ 5  t = 6  t ~ - 7  t ~ 8  

7 19 37 61 91 127 169 217 11, 2 
24 84 180 312 480 684 924 1200 12, 2 

6 54 138 258 414 606 834 1098 13, 2 
24 96 204 348 528 744 996 14, 2 

6 54 150 282 450 654 894 3, 3 24 
24 96 216 372 564 792 4, 3 

6 54 150 294 474 690 5, 3 
24 96 216 384 588 6, 3 

6 54 150 294 486 7, 3 
24 96 216 384 8, 3 

6 54 150 294 9, 3 
24 96 216 10, 3 

6 54 150 11, 3 
24 96 12, 3 

6 54 13, 3 
24 4, 4 

6 5, 4 
12 60 144 264 420 612 840 1104 6, 4 

72 216 432 720 1080 1512 2016 7, 4 
24 144 336 600 936 1344 1824 8, 4 

72 240 480 792 1176 1632 9, 4 
24 144 360 648 1008 1440 10, 4 

72 240 504 840 1248 11, 4 
24 144 360 672 1056 12, 4 

72 240 504 864 5, 5 
24 144 360 672 6, 5 

72 240 504 7, 5 
24 144 360 8, 5 

72 240 9, 5 
24 144 10, 5 

72 11, 5 
24 6, 6 

18 78 174 306 474 678 918 7, 6 
96 264 504 816 1200 1656 8, 6 
36 180 396 684 1044 1476 9, 6 

96 288 552 888 1296 10, 6 
36 180 420 732 1116 7, 7 

96 288 576 936 8, 7 
36 180 420 756 9, 7 

96 288 576 8, 8 
36 180 420 

b l ,  m 
l, m r " 

t ~ - 3  t ~ 4  t ~ - 5  t ~ - 6  t ~ 7  t ~ 8  

96 204 
120 312 
48 216 

120 
48 

30 114 
144 

60 

36 

96 288 
36 180 

96 
36 

348 528 744 
576 912 1320 
456 768 1152 
336 624 984 
216 480 816 
120 336 648 
48 216 480 

120 336 
48 216 

120 
48 

234 390 582 
360 648 1008 
252 516 852 
144 384 696 

60 252 540 
144 384 

60 252 
144 

60 
132 264 432 
168 408 720 

72 288 576 
168 432 

72 288 
168 

72 
42 150 294 

192 456 
84 324 

192 
84 

48 168 
216 

96 
54 

• • 

r J,7 

• • • . 8  

~ D 

Fig.  1. Co-ordinate  sys t em used to define 
the  in ter -cyl inder  vectors.  

T h e  n u m b e r  bl, m of  v e c t o r s  o f  l e n g t h  rz, m s m a y  b e  
s h o w n  t o  b e  g i v e n  b y  t h e  e x p r e s s i o n  

r = rain. (t-m, 2t--/--m) m--1 
b~,m = 12 ~ [ 2 t - l - m + l - r ] + 1 2  Z [ 2 t - l - m + l ]  

r=0 r--1 
t 

+ 12 fl_~ [ 2 t - r - l + l ]  (5) 
r = max. (m, 1) 

o r  a l t e r n a t i v e l y  

bl, m = 1 2 ( R  + l ) ( 2 t - l - m  + 1--½R)R=min.(t_m,u_l_m) 

+ 1 2 ( m - - 1 ) ( 2 t - - l - - m + l )  

+ 1 2 ( t - R +  1 ) [ 2 t - - l + l - - ½ ( t + / ~ ) J R = m a x . ( m ,  1) • (6) 

T h e  s e c o n d  t e r m  i n  e q u a t i o n s  (5) a n d  (6) is v a l i d  f o r  

t h o s e  v e c t o r s  w h e r e  m - 1  > 0. I f  m = 0 o r  1 = m ,  
t h e  v e c t o r s  a r e  c o u n t e d  t w i c e  a n d  e q u a t i o n s  (5) a n d  
(6) g i v e  2bz, m. E q u a t i o n  (6) g i v e s  b0, 0 = 1 2 ( 3 t 2 + 3 t + l )  
= 1 2 n  i n s t e a d  o f  n ;  t h e  m u l t i p l i c i t y  f a c t o r  o f  12 

c o r r e s p o n d i n g  t o  t h e  s y m m e t r y  o f  t h e  h e x a g o n a l  

l a t t i c e  is n o t  v a l i d  f o r  t h e  i d e n t i t y  v e c t o r s  (0, 0) a n d  
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(e) 
:Fig. 2. (a) t o  (e). The v a r i a t i o n  of T(x) w i t h  x fo r  t = 1 to  

t = 8 is s h o w n  a t  i n t e r v a l s  of x in  t h e  r a n g e  x ---- 0 to  x = 9. 
I n  (b) t h e  n u m e r i c a l  v a l u e s  of  t h e  o r d i n a t e  s h o u l d  b e  

m u l t i p l i e d  b y  2 f o r  t h e  c u r v e  t = 1. 
I n  (c) t h e  sca le  of T(x) h a s  b e e n  c h a n g e d  in  t h e  r a n g e  

i l l  ,~×t=~i 

j j 
i \ ~, / ; 

2 3 4 5 6 7 

(d) 

f r o m  x ---- 2 t o  x = 6. I n  t h i s  r a n g e  t h e  n u m e r i c a l  v a l u e s  
of  t h e  o r d i n a t e  s h o u l d  b e  d i v i d e d  b y  5. 

I n  (d) t h e  sca le  of  T(x) h a s  b e e n  c h a n g e d  in  t h e  r a n g e  
f r o m  x ---- 1.5 t o  x ---- 6.5. I n  t h i s  r a n g e  t h e  n u m e r i c a l  v a l u e s  
of  t h e  o r d i n a t e  s h o u l d  b e  d i v i d e d  b y  5. 
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thus equations (5) and (6) are applicable only for 
l > m > 0 .  V a l u e s o f b ~ , ~ f o r t = l t o t = 8 a r e g i v e n  
in Table 1. 

I t  is of interest to examine the behaviour of T(x) 
near the origin, as x -+ 0 equation (4) becomes 

and 

X2 ?~ 2 
T(x)~_>o --> 1 -  ~ . bjrj , 

I ( k R ) ~ o  ~ 1 -  ~ R ~ 2  [ n2 i J (7) 

where ~ = s/2R is the 'swelling' parameter introduced 
by Oster & Riley (1952b). 

An International Business Machines Type 650 
Electronic Data Processing Machine was programmed 
to calculate T(x) and the computations carried out for 
the eight hexagonal lattices in the range x = 0 to 
x = 9 at intervals of 0.06. The zero order Bessel func- 
tions were computed by means of an expansion in 
Tchebychev polynomials (Hitchcock, 1958) and a 
modified form of the summation procedure adopted 
by Langridge, Barnett  & Mann (1958). The minimum 
accuracy of the results for T(x) (at the minima for 
t = 8) was 1%; the complete calculation took 8 hr. 
The values of T(x) are plotted against x for t = 1 to 
t = 8  in Fig. 2. 

The main maximum in the T(x) curves shown in 
Fig. 2(e) moves progressively from x = 7.205 towards 
the value x = 7.255 corresponding to an infinite 
hexagonal lattice. The number of maxima in the range 
of x considered is 2t. 

D i s c u s s i o n  

Coherent assemblies of long chain molecules are 
produced in fibres by inter-chain bonds such as the 
- S - S -  bridge and the O H . . .  0C hydrogen bond 
together with Van der Waals forces and weak Coulomb 
forces. In concentrated solutions of polyelectrolytes 
e.g. proteins and nucleic acids, aggregation is produced 
by Coulomb interactions between the ionized groups 
which impose restrictions on the spatial distribution 
of the charged molecules. The T(x) curves may be 
used to deduce the size of the coherent scattering units 
(for the hexagonal case) from the small-angle X-ray 
scattering produced by either solid samples or solu- 
tions. The mean size of the regions where ordered 
packing exists is directly related to the gradient of the 
scattering curve at the origin since from equation (7) 
we have to a good approximation that  

When the T(x) functions are used to analyse an 

experimental curve functions T(k) and .F2(k) are 
evaluated from T(x) and .F2(kR) by using the ap- 
propriate values of s and R. Since F2(k) decreases 
rapidly as k increases when R is in the range found for 
long chain molecules the maxima in I(k) = F2(k)T(k) 
are displaced to lower k values. If a Gaussian shape is 
assumed for a maximum in T(k) at k = k 0 given by 
T(k) = T O exp [-c~2(k-ko)2]+glTo, then the shift Ak 
in the position of the corresponding maximum in I(k) 
is given for A k small by 

Alk~ [~---k (F2(k)] T(k)/[2o~2-F2(ko)To]. 
k=kO 

The scattering of aggregates of cylindrical units has 
been dealt with above with particular reference to the 
X-ray case but the results may  be applied to the inter- 
pretation of intensity data obtained by light-scattering 
(visible radiation) from solutions of long chain mole- 
cules providing that  the conditions An 0 < 1 and 
47~LAn o < ~ (e.g. Oster, 1948) are satisfied. Here L 
is the length of a single cylindrical unit  and /ln0 is 
the difference between the refractive indices of the 
solution and the solvent for light of wavelength ~. 
The second condition is usually satisfied for solutions 
of high polymeric materials while the first can be 
satisfied by addition of highly refractive substances to 
the solution. 

I wish to thank Prof. J. T. Randall,  F. R. S. for 
the provision of facilities, Drs M. F. Sykes and 
M. E. Fisher for help in the derivation of equation (5) 
and Mr W. Angell for aid in programming. 
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